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Comment on the paper “Third-harmonic generation investigated 
by a short-range bottomless exponential potential well” by M. Hu, 
K. Guo, Q. Yu, Z. Zhang [Superlattices and Microstructures, 122 
(2018) 538–547] 
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a Russian-Armenian University, Yerevan, 0051, Armenia 
b Institute for Physical Research, Ashtarak, 0203, Armenia 
c Armenian State Pedagogical University, Yerevan, 0010, Armenia    

We have discovered several severe errors in the recent paper M. Hu, K. Guo, Q. Yu, Z. Zhang [Superlattices and Microstructures, 
122 (2018) 538–547]. Specifically, we demonstrate that both the solution of the Schr€odinger equation and the bound-state wave 
functions used in the paper are incorrect. 

In the recent paper [1], the authors discuss the third-harmonic generation investigated by a short-range bottomless exponential 
potential well. 

Unfortunately, the paper contains several severe mistakes.  

1. The short-range bottomless exponential potential the authors discuss is 

V ¼
V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� y=δ
p � V0: (1)   

By the change of the variables ψ ¼ uðxÞφðxÞ with x ¼ xðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� y=δ
p

, the authors reduce the Schr€odinger equation 

d2ψ
dy2 þðE � VðyÞÞ

2m
ℏ2 ψ ¼ 0 (2)  

to the Heun equation 

d2u
dx2 þ

du
dx

�
a

xþ 1
þ

b
x
þ

c
x � 1

�

� u
k � βγx

xðxþ 1Þðx � 1Þ
¼ 0: (3) 

The authors claim that here a ¼ � 1. However, one checks that the parameter b, not a, is equal to minus one. This is an important 
point which plays a key role in constructing the solution of the equation (see below). 

Next, the authors claim that the solution of the Heun equation (3) is given as 
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uðxÞ¼
�

c1HρðzÞþ 1F1

�

�
ρ
2
;
1
2
; z2
�

c2

�

e
ffiffiffiffiffi
2ρz�
p

; (4)  

where Hρ is the Hermite function, 1F1 is the confluent hypergeometric function and 

z¼ sgnðV0Þ
ffiffiffiffiffi
σx
p

þ
ffiffiffiffiffi
2ρ

p
: (5) 

However, this solution is not correct. This is immediately checked by direct substitution of function (4) into the Heun equation (3). 
An alternative simple checking can also be done, for instance, by putting, for simplicity, c2 ¼ 0, then expanding function (4) into power 
series at point x0 ¼ 2ρ=σ and substituting the resulting expansion into the Heun equation. One is then readily convinced that the result 
is not zero, hence, the function (4) does not solve the Heun equation (3). 

The correct solution of equation (4) is presented in Ref. [2]. It is not written as a linear combination of a Hermite function and a 
Kummer confluent hypergeometric function. Rather, the correct solution is given by the Clausen generalized hypergeometric functions 
3F2 as [2] (see also [3–5]) 

u¼ c1 � 3F2

�

β; γ; 1þ
βγ
k

;
βγ
k
; a;

xþ 1
2

�

þ c2 � 3F2

�

β; γ; 1 �
βγ
k

; �
βγ
k
; c;

1 � x
2

�

; (6)  

where c1 and c2 are arbitrary constants. Note that the exponent parameters involved in equation (3) obey the Fuchsian condition c ¼
1þ βþ γ � a � b and the accessory parameter k satisfies the equation 

k2þ kða � cÞ � βγ¼ 0: (7) 

We emphasize that this solution applies if b ¼ � 1. This is why we have stressed above that the specification a ¼ � 1, claimed by 
the authors, is not correct.  

2. The authors claim that the potential (1) supports infinitely many bound states with energy levels given as 

En¼ n� 2=3
�
� mV0

ℏ2

�1=3V0

2
; n¼ 1; 2; 3;⋯ (8)   

However, this is an incorrect assertion because the number of bound states is in fact finite as shown in Ref. [2]. This is because the 
potential is a short-range one with exponentially vanishing behavior as x goes to infinity. It can readily be checked that the integral of 
the function xVðxÞ over the positive semi-axis is finite; hence, according to Bargmann’s test [6], the potential indeed supports only a 
finite number of bound states. A rather accurate estimate for the number of bound states can be derived by checking the integral by 

Calogero 
Z ∞

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� VðxÞ

p
dx [7] and further applying the asymptotic result by Chadan [8]. As a result, one obtains [2]. 

n � 2
� ffiffiffi

2
p
� 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mδ2 jV0j=ℏ2
q

: (9)    

3. The authors claim that the bound-state wave functions are constructed by polynomial reductions of the function (4) if one puts c2 ¼

0: 

ψn¼
�

HnðzÞ �
ffiffiffiffiffi
2n
p

Hn� 1ðzÞ
�

e�
ffiffiffiffi
2n
p

z� σx=2; (10)  

where z ¼
ffiffiffiffiffiffi
2n
p

�
ffiffiffiffiffiffi
σx
p

. In the light of aforesaid, this is of course a wrong assertion. For instance, the ground state wave function 
constructed in this way is given as 

ψ1¼
�

1 �
ffiffiffi
2
p

z
�

e�
ffiffi
2
p

z� σx=2: (11)   

It is straightforward to check that this function does not satisfy the Schr€odinger equation (2). 
One should also note that the polynomial reductions (10) are such that they do not vanish at the origin. For instance, for the ground 

state n ¼ 1 we have from equation (11) 

ψ1jx¼0¼ � e� 2 6¼ 0: (12) 

However, according to the detailed analysis presented, e.g., in Ref. [9], the bound state wave functions should vanish at the origin. 
This requirement leads to an energy spectrum which differs from (8) by a non-zero Maslov index (see Ref. [11]). 
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4. The correct bound-state wave functions are presented in Ref. [2]. As it was mentioned above, the functions are given in terms of the 
Clausen generalized hypergeometric functions 3F2. Alternatively, these functions can be written in terms of the familiar Gauss 
hypergeometric functions 2F1 as [2]. 

ψ ¼ðzþ 1Þα1 ðz � 1Þα2

�

2F1

�

α; β; 1þ 2α2;
1 � z

2

�

þ
2α2ðα1 � α2Þ

αβ � 2α2ðα1 � α2Þ
2F1

�

α; β; 2α2;
1 � z

2

��

; (13)  

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� y=δ
p

, and 

α1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mδ2

ℏ2 ð� E � 2V0Þ

s

; α2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2mδ2E
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s

; (14)  

α; β¼ α1þ α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8mδ2

ℏ2 ð� E � V0Þ

s

: (15)   

The exact equation for energy spectrum is given as [2]. 

3F2

�

α; β; 1 � αβ
q

; �
αβ
q
; 1þ 2α2;

1
2

�

¼ 0: (16) 

This equation can be conveniently rewritten in terms of the hypergeometric functions 2F1 as 

SðEÞ� 1 �
αβþ 2α2q

2α2q
2F1ðα; β; 1þ 2α2; 1=2Þ

2F1ðα; β; 2α2; 1=2Þ
¼ 0: (17)  

With this spectrum equation, it is straightforwardly checked that the wave functions (13) satisfy the Schr€odinger equation (2) for 
potential (1). The normalized wave functions for parameters chosen as m;ℏ;V0; δ ¼ 1; 1; � 4;2 are shown in Fig. 1. It is seen that the 

Fig. 1. Normalized wave functions (reproduction from Ref. [2]).  

Fig. 2. Graphical representation of the spectrum equation (17) (reproduction from Ref. [2]).  
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wave functions indeed vanish at the origin. 
The plot of function SðEÞ for parameters c is shown in Fig. 2. In this case the function has only three roots [2]: 

E1;2;3¼ � 0:0294695; � 0:4166327; � 2:1680511; (18)  

so that the number of bound states is three. We note that the estimate (9) for the number of bound states gives n � 3:31, which is indeed 
an accurate estimate.  

5. The authors of the commented paper discuss the third harmonic generation based on the transitions between discrete energy levels. 
We note that such a generation is possible only if there exist at least four discrete energy levels. Since the number of the bound-state 

Fig. 3. Energy levels vs. V0 if m;ℏ; δ ¼ 1;1; 2. The filled circles indicate the points where a now energy level emerges.  

Fig. 4. Energy intervals vs. V0 if m;ℏ; δ ¼ 1;1; 2.  

Fig. 5. Transition matrix element M12 vs. V0 if m;ℏ; δ ¼ 1; 1;2.  
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energy levels is approximately proportional to 
ffiffiffiffiffiffiffiffi
jV0j

p
(see estimate (9)), an immediate conclusion is that the generation is possible 

only if the potential strength jV0j exceeds the minimal threshold estimated using inequality (9) as 

jV0j �
4
�
3þ 2

ffiffiffi
2
p �

ℏ2

mδ2 �
23
δ2

ℏ2

m
: (19)   

For example, since there are only three discrete levels for parameters m; ℏ; V0; δ ¼ 1; 1; � 4;2, it is understood that the third 
harmonic generation in this particular case is not possible at all. 

To get a general insight on the possibility of harmonic generation (more precisely, the possibility of wave mixing such as sum- 
frequency generation, difference-frequency generation, etc.), it is helpful to look at the behavior of the bound-state energy levels, 
corresponding energy intervals and the transition matrix elements as functions of the potential parameter V0. These dependences for 
m;ℏ; δ ¼ 1; 1;2 are shown in Figs. 3–5. As seen from Fig. 3, for small jV0j < 1:3 one has only one energy level, other levels gradually 
emerging as jV0j increases. A three-wave mixing (e.g., the second harmonic generation) becomes possible if the third level emerges at 
jV0j � 3. A four-wave mixing (e.g., the third harmonic generation) is possible when the fourth level emerges. For the particular pa
rameters chosen, this happens when jV0j > 5:5. 

1. Discussion 

The authors consider the third harmonic generation by a quantum system bound in the short-range bottomless exponential po
tential well (1), which belongs to the general Heun classes of potentials [10]. The treatment of the paper is incorrect in several 
instances. 

First, the correct solution of the Schr€odinger equation for this potential is written in terms of the Clausen generalized hypergeo
metric functions [2] (or, alternatively, as an irreducible linear combination of two Gauss ordinary hypergeometric functions, see 
Ref. [5]), while the authors claimed a solution being a linear combination of a Hermite function and a Kummer confluent hyper
geometric function. 

Second, the authors claim that the number of bound states supported by the potential is infinite, while the potential is a short-range 
and thus supports only a finite number of bound states. This is readily checked by Bargmann’s test [6]. 

Third, the bound state wave functions used in the paper are incorrect. It should be noted that the wave functions used by the authors 
refer in fact to the inverse-square-root potential treated in Ref. [11]. Note also that the latter potential belongs to a different Heun class. 
Namely, the inverse-square-root potential belongs to a bi-confluent Heun class [12–14]. 

Fourth, the bound state wave functions used in the paper do not vanish at the origin, while the well known analysis strongly in
dicates that they should vanish [9]. 

We hope that our contribution will serve the authors of the original article and the readers of the journal to improve their 
knowledge of physical systems such as those discussed here. 
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